Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(3): 1272-1281, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38126765

RESUMO

The discovery, characterization, and control of heavy-fermion low-dimensional materials are central to nanoscience since quantum phenomena acquire an exotic and highly tunable character. In this work, through a variety of comprehensive experimental and theoretical techniques, it was observed and predicted that the synthesis of ultrathin Bi films on the InAs(111)A surface produces quasi-one-dimensional spin-polarized states, providing a platform for the realization of a unique spin-transport regime in the system. Scanning tunneling microscopy and low-energy electron diffraction measurements revealed that the InAs(111)A substrate facilitates the formation of the Bi-dimer phase of 2√3 × 3 periodicity with an admixture of the Bi-bilayer phase under submonolayer Bi deposition. X-ray photoelectron spectroscopy (XPS) measurements have shown the chemical stability of the Bi-induced phases, while spin and angle resolved photoemission spectroscopy (SARPES) observations combined with state-of-the-art DFT calculations have revealed that the electronic spectrum of the Bi-dimer phase holds a quasi-1D hole-like spin-split state at the Fermi level with advanced spin texture, whereas the Bi-bilayer phase demonstrates metallic states with large Rashba spin-splitting. The band structure of the Bi/InAs(111)A interface is discovered to hold great potential as a high-performance spintronics material fabricated in the ultimate two-dimensional limit.

2.
J Phys Chem Lett ; 13(45): 10479-10485, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36326613

RESUMO

Introducing an atomic Au monolayer between a Pb film and a Si(100) substrate allows us to fabricate Pb films with single- and double-atom thicknesses. The Pb films have a 2D square-lattice structure with the 1D atomic chains of Pb adatoms on their top, forming Si(100)1 × 7-(Pb, Au) and Si(100)5 × 1-(Pb, Au) superstructures for single and double atomic Pb layers, respectively. Their common characteristic feature is the occurrence of bundles of quasi-1D metallic bands. Transport measurements showed that samples with a Au interlayer demonstrate enhanced superconductor properties, as compared to Pb layers grown on the bare Si(100) surface. Toward improved superconductor properties, the (Pb, Au)/Si(100) system successively avoids risks associated with possible intermixing between adsorbate layers and substrate, as well as with possible Peierls transition into an insulator state, typical for the 1D systems. This finding opens new ways to control low-dimensional superconductivity at the atomic-scale limit.

3.
Nanoscale ; 14(39): 14732-14740, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36172823

RESUMO

We report on the successful synthesis of a 2D atomically thin heavy-fermion CePb3 kagome compound on a Si(111) surface. Growth and morphology were controlled and characterized through scanning tunneling microscopy observations revealing the high crystalline quality of the sample. Angle-resolved photoelectron spectroscopy measurements revealed the giant highly-anisotropic Rashba-like spin splitting of the surface states and semi-metallic character of the spectrum. According to the DFT calculations, the occupied hole and unoccupied electron states with huge spin-orbit splitting and out-of-plane spin polarization reside at the M̄ points near the Fermi level EF, which is ≈100 meV above the experimental one. The out-of-plane FM magnetization was found to be preferred with Ce spin and orbital magnetic momenta values of 0.895µB and -0.840µB, respectively. The spin-split states near EF are primarily formed by Pb pxy orbitals with the admixing of Ce d and f electrons due to the Ce f-d hybridization acquired asymmetry with respect to the sign of k∥. The observed electronic structure of the CePb3/Si(111)√3 × âˆš3 system is rather unique and in the hole-doped state, like in our experiment, can be enabled in the tunable spin current regime, which makes it a prospective 2D material for spintronic applications.

4.
Nano Lett ; 22(3): 881-887, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35084202

RESUMO

A magnetic skyrmion induced on a ferromagnetic topological insulator (TI) is a real-space manifestation of the chiral spin texture in the momentum space and can be a carrier for information processing by manipulating it in tailored structures. Here, a sandwich structure containing two layers of a self-assembled ferromagnetic septuple-layer TI, Mn(Bi1-xSbx)2Te4 (MnBST), separated by quintuple layers of TI, (Bi1-xSbx)2Te3 (BST), is fabricated and skyrmions are observed through the topological Hall effect in an intrinsic magnetic topological insulator for the first time. The thickness of BST spacer layer is crucial in controlling the coupling between the gapped topological surface states in the two MnBST layers to stabilize the skyrmion formation. The homogeneous, highly ordered arrangement of the Mn atoms in the septuple-layer MnBST leads to a strong exchange interaction therein, which makes the skyrmions "soft magnetic". This would open an avenue toward a topologically robust rewritable magnetic memory.

5.
ACS Nano ; 15(12): 19357-19363, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34783543

RESUMO

The controlled confinement of the metallic delta-layer to a single atomic plane has so far remained an unsolved problem. In the present study, the delta-type structure with atomic sheet of NiSi2 silicide embedded into a crystalline Si matrix has been fabricated using room-temperature overgrowth of a Si film onto the Tl/NiSi2/Si(111) atomic sandwich in ultrahigh vacuum. Tl atoms segregate at the growing Si film surface, and the 1.5-3.0 nm thick epitaxially crystalline Si layer forms atop the NiSi2 sheet. Confinement of the NiSi2 layer to a single atomic plane has been directly confirmed by transmission electron microscopy. The NiSi2 delta-layer demonstrates a p-type conductivity associated with the electronic transport through the two hole-like and one electron-like interface-state bands. The basic structural and electronic properties of the NiSi2 delta-layer remain after keeping the sample in air for one year.

6.
J Phys Chem Lett ; 12(39): 9584-9587, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34582213

RESUMO

The atomic structure of the Si(100)2×3-Ag reconstruction has remained unknown for more than 25 years since its first observation with scanning tunneling microscopy, despite a relatively small unit cell and seeming abundance of the available experimental data. We propose a structural model of the Si(100)3×2-Ag reconstruction which comfortably fits all the principal experimental findings, including our own and those reported in the literature. The model incorporates 3 Si atoms and 4 Ag atoms per the 2 × 3 unit cell forming linear atomic chains along the 3aSi-periodic direction. A peculiar feature of the Si(100)2×3-Ag structure is the occurrence of the inner Si dimers in the second atomic layer from the top of the Si(100) substrate. The reconstruction is proved to possess semiconducting properties.

7.
Nano Lett ; 19(1): 570-575, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30511866

RESUMO

Creation of the 2D metallic layers with the thickness as small as a few atomic layers and investigation of their properties are interesting and challenging tasks of the modern condensed-matter physics. One of the possible ways to grow such layers resides in the synthesis of the so-called metal-induced reconstructions on silicon (i.e., silicon substrates covered with ordered metal films of monolayer or submonolayer thickness). The 2D Au-Tl compound on Si(111) surface having [Formula: see text] periodicity belongs to the family of the reconstructions incorporating heavy-metal atoms with a strong spin-orbit coupling (SOC). In such systems, strong SOC results in the spin-splitting of surface-state bands due to the Rashba effect, the occurrence of which was experimentally proved. Another remarkable consequence of a strong SOC that manifests itself in the transport properties is a weak antilocalization (WAL) effect, which has never been explored in the metal layers of atomic thickness. In the present study, the transport and magnetotransport properties of the 2D Au-Tl compound on Si(111) surface were investigated at low temperatures down to ∼2.0 K. The compound was proved to show behavior of the 2D nearly free electron gas system with metallic conduction, as indicated by Ioffe-Regel criterion. It demonstrates the WAL effect which is interpreted in the framework of Hikami-Larkin-Nagaoka theory, and possible mechanisms of the electron decoherence are discussed. Bearing in mind that besides the (Au, Tl)/Si(111)[Formula: see text] system, there are many other ordered atomic-layer metal films on silicon differing by composition, structure, strength of SOC, and spin texture, which provide a promising area for prospective investigations of the WAL effect at the atomic-scale limit when the film thickness is less than the electron wavelength.

8.
Nano Lett ; 18(7): 4338-4345, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29925235

RESUMO

Two-dimensional (2D) topological insulator is a promising quantum phase for achieving dissipationless transport due to the robustness of the gapless edge states resided in the insulating gap providing realization of the quantum spin Hall effect. Searching for two-dimensional realistic materials that are able to provide the quantum spin Hall effect and possessing the feasibility of their experimental preparation is a growing field. Here we report on the two-dimensional (In, Sb)2[Formula: see text]2[Formula: see text] compound synthesized on Si(111) substrate and its comprehensive experimental and theoretical investigations based on an atomic-scale characterization by using scanning tunneling microscopy and angle-resolved photoelectron spectroscopy as well as ab initio density functional theory calculations identifying the synthesized 2D compound as a suitable system for realization of the quantum spin Hall effect without additional functionalization like chemical adsorption, applying strain, or gating.

9.
Sci Rep ; 6: 19446, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26781340

RESUMO

Crystalline atomic layers on solid surfaces are composed of a single building block, unit cell, that is copied and stacked together to form the entire two-dimensional crystal structure. However, it appears that this is not an unique possibility. We report here on synthesis and characterization of the one-atomic-layer-thick Tl(x)Bi(1-x) compounds which display quite a different arrangement. It represents a quasi-periodic tiling structures that are built by a set of tiling elements as building blocks. Though the layer is lacking strict periodicity, it shows up as an ideally-packed tiling of basic elements without any skips or halting. The two-dimensional Tl(x)Bi(1-x) compounds were formed by depositing Bi onto the Tl-covered Si(111) surface where Bi atoms substitute appropriate amount of Tl atoms. Atomic structure of each tiling element as well as arrangement of Tl(x)Bi(1-x) compounds were established in a detail. Electronic properties and spin texture of the selected compounds having periodic structures were characterized. The shown example demonstrates possibility for the formation of the exotic low-dimensional materials via unusual growth mechanisms.

10.
Sci Rep ; 4: 4742, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24752038

RESUMO

To exploit Rashba effect in a 2D electron gas on silicon surface for spin transport, it is necessary to have surface reconstruction with spin-split metallic surface-state bands. However, metals with strong spin-orbit coupling (e.g., Bi, Tl, Sb, Pt) induce reconstructions on silicon with almost exclusively spin-split insulating bands. We propose a strategy to create spin-split metallic bands using a dense 2D alloy layer containing a metal with strong spin-orbit coupling and another metal to modify the surface reconstruction. Here we report two examples, i.e., alloying reconstruction with Na and Tl/Si(111)1 × 1 reconstruction with Pb. The strategy provides a new paradigm for creating metallic surface state bands with various spin textures on silicon and therefore enhances the possibility to integrate fascinating and promising capabilities of spintronics with current semiconductor technology.

11.
Nanotechnology ; 24(5): 055302, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23306698

RESUMO

The ability of scanning tunneling microscopy to manipulate selected C(60) molecules within close packed C(60) arrays on a (Au,In)/Si(111) surface has been examined for mild conditions below the decomposition threshold. It has been found that knockout of the chosen C(60) molecule (i.e., vacancy formation) and shifting of the C(60) molecule to the neighboring vacant site (if available) can be conducted for wide ranges of bias voltages (from -1.5 to +0.5 V), characteristic manipulation currents (from 0.02 to 100 nA) and powers (from 2 × 10(-8) to 0.1 µW). This result implies that the manipulation is not associated with the electrical effects but rather has a purely mechanical origin. The main requirement for successful C(60) knockout has been found to be to ensure a proper 'impact parameter' (deviation from central impact on the C(60) sphere by the tip apex), which should be less than ~1.5 Å. A certain difference has been detected for the manipulation of C(60) in extended molecular arrays and molecular islands of a limited size. While it is possible to manipulate a single C(60) molecule in an array, in the case of a C(60) island it appears difficult to manipulate a given fullerene without affecting the other ones constituting the island.

12.
Nanotechnology ; 19(24): 245608, 2008 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-21825820

RESUMO

Upon room-temperature deposition onto a Cu/Si(111)'5 × 5' surface in ultra-high vacuum, Cu atoms migrate over extended distances to become trapped at the step edges, where they form Cu nanowires (NWs). The formed NWs are 20-80 nm wide, 1-3 nm high and characterized by a resistivity of ∼8 µΩ cm. The surface conductance of the NW array is anisotropic, with the conductivity along the NWs being about three times greater than that in the perpendicular direction. Using a similar growth technique, not only the straight NWs but also other types of NW-based structures (e.g. nanorings) can be fabricated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...